
ENHANCEMENTS IN FREERADIUS 3
EAP-TLS THE ROLLS-ROYCE OF EAP METHODS

2016

INTRODUCTION

WHOAMI

▸ Arran Cudbard-Bell (@arr2036)

▸ FreeRADIUS Core Developer

▸ Mercenary at Network RADIUS

▸ Director RM-RF LTD

▸ IETF participant (RADEXT)

▸ Janet 802.1X SIG member

INTRODUCTION

WHATIS FREERADIUS

▸ The world's most widely deployed Open Source
RADIUS server.

▸ Glues AAA services to backends e.g. 802.1X/EAP to
Active Directory.

▸ Routes AAA authentication sessions between
members of federations like Eduroam.

▸ Adds intelligence to dumb protocols, using flexible
policies. http://freeradius.org

INTRODUCTION

TOPICS

▸ PEAP - The Ford Pinto of EAP methods.

▸ EAP-TLS - The Rolls-Royce of EAP methods.

▸ What's new in v3.0.x.

PART 1

PEAP - THE FORD PINTO OF EAP METHODS

WHY IS PEAP INSECURE?

▸ MSCHAPv2 is broken, must be wrapped in TLS.

▸ TLS only protects data if peer is not evil.

▸ Ensuring peer is not evil requires a trust relationship.

▸ Trust relationship during bootstrap requires PKI savvy users.

▸ Users are not PKI savvy.

PEAP - THE FORD PINTO OF EAP METHODS

NOT NEWS

▸ Presented at Defcon 20 (2012) by David Hulton.

▸ 16 byte MD4 hash is as good as Cleartext for MSCHAPv2 (only thing the
server knows).

▸ We know the ChallengeHash, need to guess the 3 * 7 bytes NT HASH
fragments used as DES keys.

▸ That's a 2138 bit keyspace! Eeek!

▸ Wait... 21 != 16 (the other five are zeros)... so that's only two DES keys we
need to find!

▸ ...and the cipher key is the same for all DES operations, so we can brute force
all keys simultaneously.

▸ Which gives us a 256 bit keyspace, which can be broken by online DES cracking
services in < 24 hours.

Images by Moxie Marlinspike - Divide and Conquer: Cracking MSCHAPv2 with a 100% success rate
Retrieved from https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/

PEAP - THE FORD PINTO OF EAP METHODS

NOT JUST PEAP

▸ Anything that relies on MSCHAPv2 for confidentiality is broken
e.g. LEAP

▸ Any insecure inner method that relies on TLS for confidentiality
is also broken. e.g.

▸ EAP-TTLS-PAP

▸ EAP-TTLS-MSCHAPv2

▸ EAP-TTLS-GTC

▸ PEAPv1-GTC

▸ For OSX, IOS, and Windows > 8, it's possible to request TTLS-
EAP-GTC or TTLS-PAP and get the cleartext password.

▸ Attacks can be made more convincing by generating
certificates on the fly, from the NAI in the identity response.

GET https://example.org

301 + Certificate chain

⋮

Generate new public certificate,
signed by snake oil CA.
Re-use existing private key.
CN of certificate is based on
certs from institution’s web-
service.

Ephemeral certificate is loaded
into SSL *ctx, and sent to
supplicant.

Harvest plaintext credentials

Response EAP-TTTLS (21)
[EAP-TLS ACK]
TLS Client Key Exchange
TLS Change Cipher Spec
TLS (Client Finish)

Request EAP-TTLS (21)
TLS Change Cipher Spec
TLS (Server Finish)

Identity response (anonymous@example.org)

Request EAP-TTLS (21)

Identity request

Request EAP-TTLS (21)
TLS Server Hello
TLS Certificate
TLS Server Key Exchange
TLS Server Hello Done

Response EAP-TTLS (21)
TLS Client Hello

Response EAP-TTLS (21)
Diameter User-Name (01)
Diameter Password (02)

EAP-Success (3)

PEAP - THE FORD PINTO OF EAP METHODS

FAILURE OF THE DUCK TEST

▸ Only method of authenticating wireless network is SSID (which
isn't really authentication).

▸ Only method of authenticating EAP server is by presented
certificate (fingerprint, CN and signing CA).

▸ Supplicants give users too much and too little power.

PEAP - THE FORD PINTO OF EAP METHODS

FOXING FERRETS ON OSX EL-CAPITAN

▸ IOS/OSX supplicants prompt for User-Name/Password before
negotiating the EAP method.

▸ No option to select personal certificate.

▸ No option to manually configure supplicant profiles.

▸ Only CN of certificate shown in UI (can expand to see full details)

▸ Trivial to click past certificate verification dialogues, but you at
least need to be able to change trust preferences.

▸ When TTLS is requested, supplicant will send EAP-Identity and
trigger EAP negotiation, allowing negotiation of EAP-GTC.

▸ Unless network/supplicant settings were defined by a profile,
cached credentials will be re-used on networks with the same
name, but presenting a different cert.

PEAP - THE FORD PINTO OF EAP METHODS

WAYLAYING WEASELS ON WINDOWS 10

▸ For unknown networks Windows 10
supplicants auto discover WPA-Enterprise,
and prompt for User-Name/Password even
before negotiating the EAP method.

▸ No way to see certificate CN or issuer, only
available detail is fingerprint.

▸ When TTLS is requested, supplicant will
perform EAP-TTLS-PAP by default. Can't
negotiate EAP unless explicitly configured.

▸ Does allow manual configuration of
supplicant, but exceedingly well hidden.

PEAP - THE FORD PINTO OF EAP METHODS

PREVENTING MISIDENTIFICATION OF WATERFOWL

▸ Eduroam sites

▸ Transition to EAP-TLS (please?).

▸ Consider deploying Eduroam CAT or similar.

▸ Adopt HotSpot 2.0 R2. Register interest in OSU (Online Signup Server) certs provided by
central authority (GÉANT/Jisc).

▸ Pre/post-flight checks (verify supplicants behave correctly).

▸ OS/supplicant vendors

▸ Should never involve users in PKI validity checks.

▸ Failing that - Cert fingerprint MUST be consistent when re-using cached credentials for
AD-Hoc 802.1X profiles.

▸ IETF/standards bodies

▸ Define strongly worded guidelines for supplicant implementors (http://
geant3plus.archive.geant.net/Resources/Open_Call_deliverables/Documents/
SENSE_final_report.pdf)

EAP-TLS - THE ROLLS-ROYCE OF EAP METHODS

WHY MOVE TO EAP-TLS?

▸ Extremely secure - Reduces chance of user's credentials being exposed.

▸ Efficient - Almost half the round trips compared to PEAP.

▸ Robust - No need to query external oracle (AD, LDAP, SQL) for authenticating users.

▸ Scales horizontally.

▸ Well supported - Windows, OSX, IOS, Android, Even HP printers (and better supported in
future with over the air certificate deployment).

▸ Should allow for proper 2FA (in future). Linux (wpa_supplicant) already supports client
certs for PEAP/TTLS. Feature request made to Microsoft.

▸ PEAP-EAP-TLS allows for identity privacy (and SoH).

EAP-TLS - THE ROLLS-ROYCE OF EAP METHODS

EAP-TLS PKI WHAT ARE THE OPTIONS?

▸ Two established commercial solutions for managing client PKI

▸ Cloudpath

▸ Clearpass (based on a 10+ year-old version of FreeRADIUS)

▸ EST (Enrolment Over Secure Transport) RFC 7030 - Fairly simple to integrate, but
only reference implementations available.

▸ SCEP (Secure Certificate Enrolment Protocol) now revived as https://tools.ietf.org/
html/draft-gutmann-scep-02.

▸ Many implementations OpenSCEP, EJCBA and Dogtag most well known.

▸ Good support from Apple (iOS/OSX) they provide full reference code for Ruby
based SCEP server.

▸ Eduroam CAT - Local PKI (as in local to the CAT server) on roadmap, considering RFC
7030/SCEP support.

PART 2

ENHANCEMENTS IN FREERADIUS 3

WHATS NEW V3.0.X

1. RADSEC (RADIUS over TLS).

2. Password change support (MSCHAPv2).

3. Connection pools and connection pool sharing.

4. Proper regular expressions (libpcre) + Pre-Compilation +
named captures groups + 32 numbered capture groups for
all regex flavours.

5. Tests, tests and more tests (Policy language, modules etc...).

6. COLOURS (Colourised log output for errors/warnings/info).

7. IP address comparisons e.g. "<cidr>127.0.0.1 <
12.0.0.0/24".

8. 64Bit Integers and IP prefix types.

9. SNMP Traps

10. Multivalued comparisons e.g. if (&Groups[*] == &User-
Name)

shinyhead:freeradius-server-fork arr2036$ make test

UNIT-TEST base.dict

UNIT-TEST rfc.txt

UNIT-TEST errors.txt

UNIT-TEST extended.txt

UNIT-TEST lucent.txt

UNIT-TEST wimax.txt

UNIT-TEST escape.txt

UNIT-TEST condition.txt

UNIT-TEST xlat.txt

UNIT-TEST vendor.txt

UNIT-TEST dhcp.txt

...

EAPOL_TEST gtc

EAPOL_TEST leap

EAPOL_TEST md5

EAPOL_TEST mschapv2

EAPOL_TEST peap-client-mschapv2

EAPOL_TEST peap-eap-gtc

EAPOL_TEST peap-mschapv2

EAPOL_TEST pwd

EAPOL_TEST tls

EAPOL_TEST ttls-chap

EAPOL_TEST ttls-client-eap-mschapv2

EAPOL_TEST ttls-client-eap-tls

EAPOL_TEST ttls-eap-gtc

EAPOL_TEST ttls-eap-mschapv2

EAPOL_TEST ttls-mschapv2

EAPOL_TEST ttls-pap

ENHANCEMENTS IN FREERADIUS 3

WHATS NEW V3.0.X CONT...

11. LDAP Group caching.

12. LDAP Dynamic clients.

13. REST API client.

14. Arbitrary client attributes.

15. SHA2 support.

16. Significantly improved detail reader performance
(200%).

17. Shared cache support (currently memcached, Redis).

18. Startup checks for xlat and unlang syntax.

19. Pre-compilation of regular expressions

20. Functional user specific debugging

(0) ldap : Performing search in 'ou=people,o=freeradius' with filter '(uid=test.example)'

(0) ldap : Waiting for search result...

(0) ldap : User object found at DN "cn=test.example,ou=staff,ou=people,o=freeradius"

(0) ldap : No cacheable group memberships found in user object

(0) ldap : expand: '(&(objectClass=groupOfNames)(member=%{control:Ldap-UserDn}))' ->
'(&(objectClass=groupOfNames)
(member=cn\3dtest.example\2cou\3dstaff\2cou\3dpeople\2co\3dfreeradius))'

(0) ldap : expand: 'ou=groups,ou=role,o=freeradius' ->
'ou=groups,ou=role,o=freeradius'

(0) ldap : Performing search in 'ou=groups,ou=role,o=freeradius' with filter
'(&(objectClass=groupOfNames)
(member=cn\3dtest.example\2cou\3dstaff\2cou\3dpeople\2co\3dfreeradius))'

(0) ldap : Waiting for search result...

(0) ldap : Added Ldap-Group with value "adminNet" to control list

(0) ldap : Added Ldap-Group with value "adminSplunk" to control list

(0) ldap : Added Ldap-Group with value "adminCacti" to control list

(0) ldap : Added Ldap-Group with value "adminTomcat" to control list

(0) ldap : Added Ldap-Group with value "adminAlumni" to control list

(0) ldap : Added Ldap-Group with value "developers" to control list

ENHANCEMENTS IN FREERADIUS 3

NEW IN V3.0.X - TRUST ROUTER

▸ Next generation trust/ introduction service developed
as part of the Moonshot project (now the Assent
service).

▸ Allows COIs (Communities Of Interest) to operate across
multiple federations.

▸ X509v3 could technically achieve the same trust
relationships. But admin would be extremely difficult.

▸ Trust router implements two services

▸ Trust router protocol - Distributes information about
available IdPs (Identity providers) and the realms
they serve to members of a COI.

▸ Trust path query/Temporary ID protocol. Allows
service provider (SP) to retrieve a TID (Temporary ID)
for communicating with IdP.

▸ TIDs allow for lower latency, higher reliability,
communication between SPs and IdPs.

https://wiki.moonshot.ja.net/display/Moonshot/The+Architecture+and+Protocol+Flows+of+Moonshot

ENHANCEMENTS IN FREERADIUS 3

NEW IN V3.0.X - TRUST ROUTER (THE FREERADIUS BIT)

▸ SP - On call to rlm_realm, on discovering an unknown realm (or realm which requires update).

▸ Queries local TR for IdP information and TID, providing DH Params (first half of DH exchange).

▸ If positive response - retrieves list of IdP servers, the DH exchange completed for each IdP
(second half of DH exchange). Computes symmetric keys for each home server.

▸ Creates/Inserts new realm entry with realm->pool->home_server structures.

▸ Establishes outbound TCP connection to IdP.

▸ Performs TLS-PSK handshake, with the key identifier (unique ID for the temporary credentials),
and computed PSK.

▸ IdP - On request from INADDR_ANY client

▸ Uses key identity from TLS-PSK to query TR to get previously generated PSK.

ENHANCEMENTS IN FREERADIUS 3

WHY IS FREERADIUS A GOOD CANDIDATE FOR TRUST ROUTER INTEGRATION?

▸ FreeRADIUS already had support for RADSEC.

▸ Fairly minor modifications needed.

▸ Pluggable architecture, easy to accommodate changes or
enhancements to Trust Router.

▸ Dynamic debugging (watch live authentications).

▸ Scalable - 30,000 PPS when proxying on modest hardware.

ENHANCEMENTS COMING IN FREERADIUS 4

WHATS COMING IN V4

1. Redis 3.0.x cluster support.

2. High performance > (10,000 alloc/s
per cluster node) Redis IPv4/IPv6
allocation.

3. Significantly improved EAP
debugging + Improved EAP
performance

4. Certificateless EAP-TLS (like HTTPS).

5. DHCPv4 'just works' (improved auto-
discovery of interface configuration).

(11) } # if (!&Stripped-User-Domain || (&Stripped-User-Domain == '')) (noop)
(11) if (&Stripped-User-Name == 'peap') {
(11) ...
(11) }
(11) eap - Peer sent EAP Response (code 2) ID 3 length 13
(11) eap - Continuing tunnel setup
(11) eap (ok)
(11) if (EAP-Type == Identity) {
(11) ...
(11) }
(11) } # authorize (ok)
(11) Using 'Auth-Type = eap' for authenticate {...}
(11) Running Auth-Type eap from file /usr/local/freeradius/etc/raddb/sites-enabled/default
(11) authenticate {
(11) eap - Peer sent packet with EAP method TTLS (21)
(11) eap - Calling submodule eap_ttls to process data
(11) eap_ttls - Authenticate
(11) eap_ttls - Continuing EAP-TLS
(11) eap_ttls - Got complete TLS record (7 bytes)
(11) eap_ttls - [eap-tls verify] = ok
(11) eap_ttls - <<< recv alert [length 2], fatal unknown_ca
(11) eap_ttls - ERROR: Client sent fatal TLS alert: unknown CA
(11) eap_ttls - ERROR: Verify client has copy of CA certificate, and trusts CA
(11) eap_ttls - ERROR: accept: Handshake exit state "SSLv3 read client key exchange A"
(11) eap_ttls - ERROR: Failed in SSL_read
(11) eap_ttls - ERROR: error:14094418:SSL routines:ssl3_read_bytes:tlsv1 alert unknown ca
(11) eap_ttls - ERROR: error:140940E5:SSL routines:ssl3_read_bytes:ssl handshake failure
(11) eap_ttls - ERROR: System call (I/O) error (-1)
(11) eap_ttls - ERROR: TLS receive handshake failed during operation
(11) eap_ttls - ERROR: [eap-tls process] = fail
(11) eap - ERROR: Failed continuing EAP TTLS (21) session. EAP sub-module failed
(11) eap - Sending EAP Failure (code 4) ID 3 length 4
(11) eap (invalid)
(11) } # authenticate (invalid)
(11) Failed to authenticate the user
(11) Using Post-Auth-Type Reject
(11) Post-Auth-Type sub-section not found. Ignoring.
(11) Delaying response for 1.000000 seconds
Waking up in 0.3 seconds.
Waking up in 0.6 seconds.
(11) Sending delayed response
(11) Sent Access-Reject Id 3 from 127.0.0.1:1812 to 127.0.0.1:63382 via lo0 length 44
(11) EAP-Message = 0x04030004
(11) Message-Authenticator = 0x00000000000000000000000000000000
Waking up in 3.9 seconds.

ENHANCEMENTS COMING IN FREERADIUS 4

WHATS NEW V3.2.X CONT...

6. Infinitely nested TLV support.

7. SNMP support (will also work over proxy
chains). Translates OIDs into TLV structures
in FR extended dictionary space. Calls
client using Net-SNMP pass persist.

8. libwbclient support (30% performance
improvement over ntlm_auth for Active
Directory authentication).

9. map { } syntax to support retrieving
multiple values per query from LDAP and
SQL.

10. JSON parsing and simple query syntax

map sql "SELECT group, reply_message FROM users WHERE user = '%{User-Name}'" {

&control:Group := 'group'

&reply:Reply-Message := 'reply_message'

}

map json "%{rest:http://www.example.org/user/%{User-Name}" {

&control:Group := 'user.group'

&reply:Reply-Message := 'user.message'

}

radsnmp (debug): read: get

radsnmp (debug): read: .1.3.6.1.2.1.67.1.1.1.1.1.0

Sent Status-Server Id 3 from (null):0 to 127.0.0.1:1812 length 78

 Radius-Auth-Serv-Ident = "\000"

 FreeRADIUS-SNMP-Operation = get

 Message-Authenticator = 0x00

Received Access-Accept Id 3 from 127.0.0.1:1812 to 127.0.0.1:49548 via (null) length 75

 Radius-Auth-Serv-Ident = "FreeRADIUS 3.1.0"

 FreeRADIUS-SNMP-Type = string

radsnmp (debug): said: 1.3.6.1.2.1.67.1.1.1.1.1

radsnmp (debug): said: string

radsnmp (debug): said: FreeRADIUS 3.1.0

radsnmp (debug): Returned 1 varbind responses

ENHANCEMENTS COMING IN FREERADIUS 4

NEW IN V4 - DISTRIBUTED SESSION RESUMPTION

▸ Server side session resumption part
of the TLS standard (not an
extension). Not RFC 5077.

▸ Hashes MSK (Master session key)
from previous session with random
data from client + server to generate
new MSK.

▸ Hashing cheap compared to
performing full RSA calculations to
generate keying material for MSK.

▸ Real wall clock saving comes from
not having to exchange big certificate
chains.

▸ With PEAP/TTLS, resuming a session
allows you to skip the inner method
(no hits on AD or LDAP).

1
2

3
4

Client Server

ClientHello >>>

 ServerHello
 Certificate
 ServerKeyExchange
 CertificateRequest
 <<< ServerHelloDone

Certificate
ClientKeyExchange
CertificateVerify
[ChangeCipherSpec]
Finished >>>

 [ChangeCipherSpec]
 <<< Finished

Application Data <-> Application Data

1

Client Server

ClientHello >>>
 ServerHello
 [ChangeCipherSpec]

 <<< Finished

[ChangeCipherSpec]
Finished >>>

Application Data <-> Application Data

3

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites;
 CompressionMethod compression_methods;
 union extensions_present;
} ClientHello;

Client hello

struct {
 ProtocolVersion server_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 union extensions_present;
} ServerHello;

Server hello

Session ID
<opaque session blob>
&session-state;[*]

2

Session ID
<opaque session blob>
&session-state;[*]

4

ENHANCEMENTS COMING IN FREERADIUS 4

▸ 2 fragments per client/
server certificate chain.

▸ Real world Time To
Completion (TTC)
assumes 50ms
credential lookup
(where relevant) + 40ms
Round Trip Time (RTT).

▸ Session blobs 138b EAP-
TTLS-PAP

▸ Session blobs 1863b
EAP-TLS.

EAP Method Efficiency

0

60

120

180

240

300

360

420

480

540

600

1

2

3

4

5

6

7

8

9

10

11

EAP-TLS EAP-TLS resumed EAP-TTLS-PAP EAP-TTLS-PAP resumed PEAP-MSCHAPv2 PEAP-MSCHAPv2 resumed
Number of rounds Real world TTC (ms)

ENHANCEMENTS COMING IN FREERADIUS 4

WASN'T THIS AVAILABLE BEFORE?

▸ Yes we've supported this for a while...

▸ The innovation is exporting the opaque session blob as an attribute.

▸ Couldn't be done in v2.x.x because max value length was 253 bytes.

▸ Couldn't be done usefully (between multiple servers) in v3.0.x because no shared
cache module.

▸ Finally in v3.2.0 we have all the components needed to support this properly,
including a new &session-state: list to simplify re-authorization.

ENHANCEMENTS COMING IN FREERADIUS 4

FUTURE LOOKING STATEMENTS

▸ Should become a generic platform for implementing network protocols, with re-
useable and flexible policy logic.

▸Move to asynchronous I/O.

▸Process has begun - Iterative (as opposed to recursive) interpreter for unlang
introduced in v3.1.x

▸Diversified protocol support

▸New internal 'proto' API introduced in v3.1.x, should allow for:

▸DHCPv6.

▸Diameter.

▸maybe ANQP (when someone creates a standard for transporting it over IP).

▸ SQL statement caching.

▸Better interpreted language support.

?

